
www.manaraa.com

COMPILERS, THE FORGOTTEN SUBJECT?

Allan C. Milne
University of Abertay Dundee

School of Computing & Engineering Systems
Kydd Building, Bell Street, Dundee

 a.milne@abertay.ac.uk
 http://a510690.ces.abertay.ac.uk/

Eilidh V. McAdam
University of Abertay Dundee

School of Computing & Engineering Systems
Kydd Building, Bell Street, Dundee

 e.mcadam@abertay.ac.uk

ABSTRACT
The teaching of compiler construction and language theory is absent from many current computing degrees,
the rationale being that they are now irrelevant to modern software engineering practice. In this paper a case
is made for the inclusion of at least certain aspects of compiler construction and language theory in computing
degrees to support and reinforce the acquisition of software development and software engineering
knowledge and skills in an object-oriented context. An outline curriculum based around the recursive-descent
methodology is proposed and a component toolkit is described that supports the delivery of this curriculum.
Small languages, formal methods and object-orientation consolidation are identified as evidence of the
applicability of compiler teaching to the wider software engineering context.

Keywords
Compiling, recursive-descent, object orientation, compiler toolkit.

1. INTRODUCTION
Computing degrees may have different foci ranging from theoretical computer science to product-based
information technology. A degree with “Computing” in its title should include at least a modicum of
programming within a software engineering context although the depth of coverage may vary widely.
Reflecting current professional software development practice this programming should be based around an
object-oriented paradigm. While computer science focused courses continue to study the area of compilers
and associated language theory, software-development focused courses now tend to omit this topic. In a
survey of 12 Scottish universities identified as offering applied computing or software engineering degrees,
only three offer modules which study compiler design and implementation. This omission is often justified
from a mistaken perception that the study of compilers is now irrelevant to modern software engineering
practice.

A case is made here for the inclusion of at least a restricted coverage of the areas of compiler construction
and language theory as topics that are directly relevant to current object-oriented software engineering
practice. This case is based on the wider applicability of the techniques acquired and to the synthesis of
previously learned knowledge and skills. An outline curriculum is presented that encapsulates the compiler
construction and language theory topics in the context of its applicability and synthesis. This curriculum is
supported by a component toolkit that facilitates the development of an object-oriented recursive-descent
compiler; this being both suitable for the implementation of a compiler for small languages and as an
exemplar of the object-oriented software engineering of a system.

Compiler construction and language theory are meaningful subjects in their own right, however it must be
appreciated that there is only a certain amount of space within the curriculum of a course and compilers may
not be regarded as the most relevant topic for practising software engineers. Therefore a more compelling
case to show this relevance must be presented for the inclusion of compiler construction and language theory
in a software engineering/development focused course.

The compiler is the ultimate tool used in software development and an understanding of its operation will
contribute to better programming practice, as long as this also contributes to learning in the wider software
engineering context. This wider contribution is expanded upon here to indicate that inclusion of the teaching

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

www.manaraa.com

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

of some aspects of compilers and languages does not “waste” curriculum space, rather it extends, reinforces
and synthesizes software development knowledge and skills.

2. A PROPOSED CURRICULUM
A computer science focused course can justify a full coverage of compiler construction and language theory
including such topics as grammar theory, different parsing techniques and code generation. Vocationally
focused software engineering courses have a different imperative and often tend to either omit or provide
cursory coverage of this area in order to address what are seen as more directly relevant subjects. A subset
of the areas of compiler construction and language theory is presented here that are relevant to practical
software development but yet provide a consistent view of the larger subject area. In particular the recursive-
descent methodology is used in order to simplify the parsing process and provide a framework for the object-
oriented compiler implementation. Theoretical aspects of grammars, parsing and code generation may be
omitted without compromising a coherent and complete coverage of the compiling process in a manner that is
practically relevant both directly in terms of constructing a working compiler and as a vehicle for exploring and
synthesizing object-oriented development.

The curriculum can derive directly from the functional structure of a compiler in a logical and quite loosely
coupled manner that can engage students by telling a “story” that, in the traditional manner, has a beginning,
a middle, and an end. Some aspects of language specification must be presented first in order to give the
compiler something to work with resulting in an outline curriculum schema of languages, scanning, parsing
and semantic synthesis.

The curriculum presented here is based on the experience of delivering a number of different compiler
courses over the last 10 years in software development focused degrees. It is flexible and can be adapted to
differing course requirements; for example this curriculum has been the basis of both single and double
semester courses, has been delivered using a number of different implementation languages, and has been
presented at pre-final year and final year levels.

The recursive-descent compiler construction methodology is used, resulting in the straightforward creation of
the controlling parser component within an object-oriented design for the overall compiler. It also clearly
differentiates the roles and requirements of the functional components of the compiler in a manner that is
clear to the students and emphasizes object-oriented message passing.

The aims and learning outcomes of this curriculum may be expressed in terms of the language theory and
compiler construction context, in terms of software engineering concepts, or as a combination of both these
domains. The author has delivered this material with aims and outcomes focusing on the compilers and
languages context with the software engineering aspects being treated as a “hidden curriculum”, although this
wider applicability is explicitly identified during the delivery. Alternatively, at the other end of the spectrum a
course can be envisaged which focuses its aims and learning outcomes at the software engineering domain
with languages and compiler construction being used to exemplify the relevant aspects of formalism and
object-oriented development. The approach taken to defining these aims is an expression of the emphasis
placed on the corresponding domains within the delivery rather than a reflection of a different curriculum.

The proposed outline content and delivery is as follows.

1) Language specification: BNF, derivation sequence, EBNF, LL(1) specifications.
2) Scanning: role and responsibility, token class representation, the scanner class, FSM, implementing

the scanner.
3) Compiler architecture: compiler phases and structure, information flows, OO architecture, other

compiler functions.
4) Parsing: role and responsibility, recursive-descent parsing structure, the parser class, transforming

EBNF to recogniser methods, error handling.

www.manaraa.com

5) Semantic analysis: role and responsibilities, symbols and the symbol table, class representations and
architecture.

6) Artifact generation: role and responsibilities, examples of generated artifacts, generation strategies,
virtual machines.

This curriculum provides a framework which a particular course may implement with differing amounts of
detail depending on the general aim of the course and the time available. For example this has been
delivered in a 10 week module that focused on items 1 to 5 with only a minimal consideration of artifact
generation; it has also been delivered over a 20 week period with more detailed examination of items 1 to 5
and where the synthesis of artifact generation was the focus of the last quarter of delivery.

The language theory covered can focus on Backus Normal Form (BNF) and its recursive extensions in
Extended BNF (EBNF) without referring to the details of grammar theory; it can state results rather than
explain theory. LL(1) specifications must be covered to support the recursive-descent parsing adopted later
but this can again be stated rather than explored in detail. The focus is on the practical role of BNF in defining
syntax to meet the structural requirements of the domain the language is to serve.

In considering BNF as a specification language the concepts of terminal and non-terminal symbols are
addressed and this leads naturally to the scanning process. At this stage the scanner is seen as a
component to transform the input stream of characters of the source program into a stream of tokens
representing the terminals of the program, without considering its integration into the compiler. As with all the
compiler phases an object-oriented approach is taken in decomposing from the role of the components with
their exposed public behaviour through to the detailed implementation of state and function using a finite state
machine (FSM).

The students are then presented with the overall architecture of the compiler showing how the scanner is
integrated with other classes in an object-oriented framework reflecting the functional and communication
requirements of the compiler. This framework of class and object relationships then provides the basis for the
detailed decomposition of each component. Figure 1 shows an outline of this object-oriented architectural
framework.

ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

www.manaraa.com

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

Figure 1 Object-Oriented Compiler Architecture.

With the overall picture described, the details of parsing can now be examined. Rather than covering the
different top-down and bottom-up parsing techniques students are exposed to the recursive-descent
methodology. This provides an example of transforming from a formal specification (the BNF) to an
implementation as well as a well-defined and code-centric programming implementation. The parser is
presented as the controlling component of the compiler; at this stage initiating and calling the scanning
process, and as the base for the semantic analysis and artifact generation phases to follow.

The synthesis phase of the compiler, incorporating Semantic analysis and artifact generation, is focused
around the role and responsibilities of the symbol table as a collection of representations of the meaning of
user-defined names (identifier symbols). The teaching should first focus on these constructs then move on to
the way in which they are used within the semantic analysis process. This phase is more bespoke than the
preceding phases as it depends very much on the semantics of the particular language being processed.
Thus teaching may cover the general architecture of integrating semantic analysis into the compiler, covering
only processes typical and common to many simpler languages; alternatively, if space and time permit, the
content can delve more deeply into the implementation of complex language requirements.

The requirements of artifact generation are dependent not only on the semantics of the specific source
language being processed but also on the nature of the target execution platform. Traditionally this phase
concerned itself with code generation for some real or virtual machine. Since many degrees no longer look at
real or virtual machine architectures in any detail this would require the commitment of a large amount of
learner time. Four alternative strategies have been adopted in differing guises of the delivery of this
curriculum to mitigate this issue.

• Use a very simple virtual machine as the target execution platform; the one used had only 16
instructions. This minimizes the learning curve but severely limits execution mechanics.

• Select an application domain in which the target artifact to be generated is not machine-level
instruction code. For example HTML has been used as a target artifact as well as other data
structures for target applications with which the students are familiar.

• Generate a string containing a program in a language already known to the students and then
dynamically compile this, delegating the machine-level generation to the underlying compiler. This
has been done using C# for the target artifact string and then invoking dynamically the C# compiler
against this string to generate an executable assembly.

• Cover this aspect of the compiler only minimally; provide an overall mechanism for connecting the
artifact generation functionality into the parser but do not delve into detailed generation.

3. THE ARDKIT TOOLKIT LIBRARY
In presenting the curriculum outlined in the previous section in a manner that reinforces object-oriented
concepts the class relationships, states and behaviour must be defined for the functional and communication
components of the compiler. Ardkit (A Recursive-Descent toolKIT) is a library of interfaces and classes that
expose the role and responsibilities of these compiler components through interface implementation, class
inheritance and object composition (Milne, 2010).

Compiler generator tools have been used for many years but these are not always practical in an educational
context (Demaille, 2008) as they do not expose the architecture or inner workings of a compiler and are
focused on producing an output rather than exploring the underlying architecture and processes. The Ardkit
toolkit, on the other hand, presents a library of interfaces and classes; the interfaces defining the required
relationships and behaviour of compiler components; the classes providing concrete implementations of these
interfaces. The toolkit classes are then used as base classes for the construction of a compiler for a specific
language.

www.manaraa.com

The Ardkit library is implemented in the C# language and exposed as a Microsoft .Net .dll library file that can
be used with any language supporting the .Net framework. The toolkit is supported by full online reference
and user documentation and can be viewed/downloaded at http://a510690.ces.abertay.ac.uk/Ardkit.

The presentation of the toolkit as a fully packaged and documented product is important to facilitate enquiry-
led learning. Experience by the authors of other tools and resources has often been compromised by the
need to present students with all the details explicitly as the operation and supporting documentation has
been obscure or non-existent. The Ardkit library can be investigated by students with only guidance from the
lecturer as to which components to review at any time.

The use of this library allows the teacher and student to focus both on the overall architecture of the compiler
an, at the other end of the spectrum, the details of the implementation specific to the target language. The
underlying implementation details that deal with more mundane aspects such as character input and RD
primitives are hidden from the developer; of course from an educational viewpoint it may be that the
implementation of the toolkit itself is worthy of inspection and the source code can be made available on
request.

By studying the interfaces, classes and relationships of Ardkit, students will gain an understanding of the
overall architecture of a recursive-descent compiler in terms of the role, responsibilities, relationships and
behaviour of its functional and communication components. Students can then move to implementing their
own compiler for some language by inheriting from the base Ardkit classes or using them directly. This allows
the students to focus on those aspects of recursive-descent compiling that are specific to their language and
to avoid time spent on implementing common or more basic functionality. For example, in creating a pure
parser the student need only implement recogniser methods derived directly from the language’s BNF
specification; these are encapsulated in a class inheriting from the Ardkit parsing class, the latter providing all
the recursive-descent primitive and client interface methods. Figure 2 outlines the only classes requiring to be
implemented for many small languages.

Figure 2 Implementing a Compiler using the Ardkit Library.

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

www.manaraa.com

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

ent feedback has been positive in terms of its efficacy in presenting and engaging students
ith this material and also, perhaps just as importantly, in exemplifying object-oriented design and

les students to create scanners very quickly within a single practical session and
en embed this scanner in an application to provide some basic metrics on an input program written in the

ler is presented. The toolkit classes supporting these activities are all presented in a consistent manner
nd students construct their compilers step by step, inheriting from the appropriate Ardkit component at each

ften have problems in creating consistent and correct syntax
pecifications; this area is to be addressed by revising, extending and publishing a formal EBNF specification

 expressed largely in general
terms; the use of the Ardkit library will not be specifically addressed but in all cases its use will enhance the

ctical and a software engineering viewpoint.

 some application domain. By a
mall language” we mean a language that expresses the structure and semantics of some application

n example of a small language is a scripting language to define the generation of a series of random
 script in this language might be as follows.

)

 1 integer value from (-999999)

The Ardkit toolkit has been used successfully to support the teaching of the curriculum described above both
in terms of examining the compiler architecture and in developing recursive-descent compilers for a variety of
languages. Stud
w
implementation.

The toolkit is first introduced to students to illustrate the construction of a scanner for a simple language. This
introduces the toolkit reference resources and the general look and feel within this simpler context of lexical
analysis; only the token and Scanner classes need be considered initially. Students are therefore made
comfortable with the idea of inheriting from a pre-written component based entirely its interface and reference
documentation. This enab
th
original source language.

Further components of the toolkit supporting the parsing, error representation, semantic analysis and symbol
manipulation requirements of the compiler are then introduced in a phased manner as each component of a
compi
a
step.

As mentioned previously student feedback on the use of the toolkit has been positive and all students were
able to construct and submit as coursework a functioning compiler for a small language. The use and feature-
set of the toolkit is regularly reviewed and updated in the light of experience; currently version 2.3 has been
released in March 2011. The support for synthesis and artefact generation is currently limited and is to be the
next area to be reviewed. It has also become apparent that further support for language specification and
processing would be useful as students o
s
language and associated processing tools.

4. RELEVANCE AND APPLICATION TO SOFTWARE ENGINEERING
Here we develop the case for the inclusion of a course in compiler construction through identifying its
relevance and application to the wider software engineering context. This is

student experience both from a pra

4.1 Small Languages
As a methodology in its own right recursive-descent compiling provides an efficient implementation technique
for the construction of compilers for small languages that may be useful in
“s
specific entity rather than a programming language in its traditional sense.

A
numeric values of some defined type from a specified range. A

 generate 10 real values from -1.99 to 1.99

 repeat 25 times

 generate 2 integer values from (1,3,5,7,9

e 5 real values from 0 to 99.99 generat

 generate

 endrepeat

www.manaraa.com

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

nd the recursive-descent
ompiler construction methodology provides students with a powerful tool in their software engineering

ration; user interface interactions. Many other
examples might be enumerated but these will hopefully provide a flavour of some different areas that can be

 compiler construction.

-world practical context. The compiler and its associated language can form this
ractical context in which to introduce at least two formal methods; Backus Normal Form (BNF) and finite

-
escent compiler construction methodology is adopted then the student will also experience the direct

gh creating a
oncrete implementation of the FSM. If deemed appropriate in the course context further details can be

lication domains and problem spaces. Providing students
with practical and useful examples of one formalism may indeed encourage them to investigate other

ntroduces the students to a large-scale, component-
ased software application that includes a variety of different design patterns and object relationships. The

 part of the model. This

This language can be defined using BNF for the syntax specification and then implementing this directly using
recursive-descent parsing. Thus an understanding of basic language theory a
c
toolbox that is directly applicable to real-world application domains (Debray, 2002).

Some other practical areas of direct applicability are the specification and implementation of the structure of
message protocols; scripts defining application configu

addressed by language theory and

4.2 Formal Methods
While formal methods are a useful tool for computing graduates, especially in the development of critical
systems (Holloway, 1997), one problem in presenting them to students is illustrating the direct relevance of
the formalism in a real
p
state machines (FSM).

Teaching language theory must introduce the student to BNF as a tool for defining the syntax of a language.
This can be extended to a deeper discussion of grammars and grammar theory if desired although this is not
necessary to support the subsequent compiler construction topic. This is also a rich base from which to
discuss the role of formal and informal methods (e.g. between syntax and semantic specification) and the
extension of a formalism (e.g. from grammar to BNF to extended BNF). If, as suggested, the recursive
d
transformation of a formal specification (the BNF) into a concrete implementation (the recogniser methods).

The use of finite state machines (or automata) is a well accepted mechanism for implementing the scanner
component of a compiler. Students can be introduced to the FSM formalism through FSM diagrams and
walk-through their operation in accepting input tokens built from an input stream of characters. This also links
in with the further formalism of regular expressions that may or may not be examined in detail as desired. As
with BNF the FSM formalism is presented within a real context, that of identifying input tokens, and this can
therefore be directly experienced first through a walk-through of the process and then throu
c
presented on alternative implementation patterns such as delta tables or state design patterns.

These two formalisms are exposed to the students in a practical and directly relevant manner. Introducing
these two techniques into the compiling context also provides students with formalisms and patterns that are
more widely applicable in the context of other app

formalisms in other areas of software engineering.

4.3 Synthesis of Software Engineering Knowledge and Skills
Using the recursive-descent compiling methodology and an object-oriented approach to the compiler
architecture provides a framework for exemplifying and synthesising a number of software engineering
concepts in a practical manner (Demaille, 2005). This i
b
Ardkit framework supports and facilitates this approach.

The compiler can be examined and/or developed from architectural structure to detailed code implementation
in a manner that reflects software engineering development practice. This allows a very top-down approach
to understanding the overall object organisation before requiring to “muddy the waters” with all the detailed
program code implementation. The functional decomposition of a compiler into scanning, parsing and
semantic synthesis maps well onto an object-oriented model with additional objects carrying the information
flows between these functional components. This is simple enough to be wholly viewed at the top level by the
student who can then also reflect on the role and responsibilities of each

www.manaraa.com

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

a sophisticated tool as a compiler can be built from
imple coding features. We can then reflect on the power being expressed by the object relationships and

sses. All of this can be clearly
ositioned within the context of the overall compiler functionality. Therefore constructing a compiler not only

o ut also exemplifies many object-oriented design and implementation details that are
her software development projects.

his paper identifies a number of positive reasons for the inclusion of a course in languages and compilers in

exploration of compiler
onstruction in a top-down manner from outline design to detailed implementation. This curriculum is

software engineering context have been described
here the curriculum is seen to be directly relevant to more mainstream development practices. These areas

for degrees focusing on software engineering/development
ill consider incorporating material on compiler construction and language theory into their courses as being a

abling contribution to the development of the students’ software engineering

NCES
ebray, S. (2002). Making compiler design relevant for students who will (most likely) never design a

emaille, A., Levillain, R. and Benoit, P. (2008) A set of tools to teach compiler construction, In Proceedings

consideration of role and responsibility without considering implementation provides a sound case study
example that students can carry across to other software development projects.

When drilling down from the design to the implementation the architectural structure is also not overwhelmed
by the necessity to cover sophisticated programming features as the compiler can be built from basic coding
knowledge. Students are always impressed that such
s
communication rather than through the sophisticated coding. This really is a case-study of object-oriented
design and patterns in action.

Thus the construction of a recursive-descent compiler provides a large-scale yet accessible object-oriented
design and implementation case study distinguishing clearly between responsibilities and implementation.
The design illustrates the use of inheritance and composition relationships; more detailed design introduces

ementation creates the concrete clainterfaces and abstract classes; impl
p
creates a useful t ol b
directly applicable to ot

5. SUMMARY
T
a practical computing degree. Such a course is promoted to support and reinforce the acquisition of software
development and software engineering knowledge and skills in an object-oriented context.

The outline curriculum proposed illustrates that a consistent and coherent course of study can be delivered to
a software engineering rather than theoretical agenda. Employing the recursive-descent methodology

that enables the practical facilitates an object-oriented compiler architecture
c
supported by the Ardkit toolkit to encourage students to focus on the larger picture and the specifics of their
target language without having to worry about underlying mechanisms.

oriented Example areas of applicability within the object-
w
of small languages, formal methods and object-oriented case study are presented to provide a rationale for
the inclusion of a compiler course in the wider curriculum.

In conclusion, it is hoped that course designers
w
relevant, positive and en
knowledge and skills.

6. REFERE
D
compiler, In Proceedings of the 33rd SIGCSE technical symposium on computer science education, ACM,
New York, USA.

D
of the 13th annual conference on Innovation and technology in computer science education, ACM, New York,
USA.

www.manaraa.com

 ITALICS Volume 10 Issue 2 June 2011 - ISSN: 1473-7507

s of the
 technology in computer science education, ACM, New

ork, USA.

ngineers should consider formal methods, In Proceedings of the 16th
IAA/IEEE Digital Avionics Systems Conference.

al of Computing Sciences in
olleges. 21(2), pp. 177-184.

Milne, A. (2010). Ardkit Recursive-Descent Compiler Toolkit (version 2).
http://a510690.cct.abertay.ac.uk/Ardkit/index.html (date accessed 23/02/2010).

Demaille, A. (2005) Making compiler construction projects relevant to core curriculums, In Proceeding
10th annual SIGCSE conference on Innovation and
Y

Holloway, C. M. (1997). Why e
A

Mallozzi, J. S. (2005). Thoughts on and tools for teaching compiler design. Journ
C

www.manaraa.com

Copyright of ITALICS: Innovations in Teaching & Learning in Information & Computer Sciences is the

property of Higher Education Academy's Subject Centre for Information & Computer Sciences (HEA-ICS) and

its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

